翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

snapshot hyperspectral imaging : ウィキペディア英語版
snapshot hyperspectral imaging
Snapshot (or "non-scanning") hyperspectral imaging〔N. Hagen and M. W. Kudenov, "(Review of snapshot spectral imaging technologies )", ''Optical Engineering'' 52: 090901 (2013).〕 is a method of capturing hyperspectral images during a single integration time of a detector array, so that no scanning is involved. The lack of moving parts allows snapshot techniques to avoid motion artifacts, but all such instruments require detector arrays with a large number of pixels. Although the first known reference to a snapshot hyperspectral imaging device—the Bowen "image slicer"—dates from 1938,〔I. S. Bowen, "The image slicer, a device for reducing loss of light at slit of stellar spectrograph", ''Astrophysical Journal'' 88: 113-124 (1938).〕 the concept did not provide an advantage for most users, due to the limited number of pixels available. With the arrival of large-format detector arrays in the late 1980s and early 1990s, a series of new snapshot hyperspectral imaging techniques were developed to take advantage of the new technology: a method which uses a fiber bundle at the image plane and reformatting the fibers in the opposite end of the bundle to a long line,〔S. C. Barden and R. A. Wade, "DensePak and spectral imaging with fiber optics", in ''Fiber Optics in Astronomy'', Astronomical Society of the Pacific Conference Series 3: 113-124 (1988).〕 viewing a scene through a 2D grating and reconstructing the multiplexed data with computed tomography mathematics,〔Takayuki Okamoto and Ichirou Yamaguchi, "(Simultaneous acquisition of spectral image information )", ''Optics Letters'' 16: 1277-1279 (1991).〕 the (lenslet-based) integral field spectrograph,〔R. Bacon, G. Adam, A. Baranne, G. Courtes, D. Dubet, J. P. Dubois, "(3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER )," ''Astronomy and Astrophysics Supplement'' 113: 347-357 (1995).〕 a modernized version of Bowen's image slicer.〔L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L.E. Tacconi-Garman, M. Cameron and R. Genzel, "(3D: The next generation near-infrared imaging spectrometer )," ''Astronomy and Astrophysics Supplement'' 119: 531-546 (1995).〕 More recently, a number of research groups have attempted to advance the technology in order to create devices capable of commercial use. These newer devices include the HyperPixel Array imager a derivative of the integral field spectragraph,〔Bodkin, A., Sheinis, A., Daly, J., Beaven, S., Weinheimer, J. “Snapshot Hyperspectral Imaging – the Hyperpixel Array Camera”, Proc. SPIE, 7334-17, (2009)〕 a multiaperture spectral filter approach,〔S. A. Mathews, "(Design and fabrication of a low-cost, multispectral imaging system )," ''Applied Optics'' 47: F71-F76 (2008).〕 a compressive-sensing–based approach using a coded aperture,〔A. Wagadarikar, R. John, R. Willett, and D. Brady, "(Single disperser design for coded aperture snapshot spectral imaging )," ''Applied Optics'' 47: B44-B51 (2008).〕 a microfaceted-mirror-based approach,〔L. Gao, R. T. Kester, T. S. Tkaczyk, "(Compact Image Slicing Spectrometer (ISS) hyperspectral fluorescence microscopy )", ''Optics Express'' 17: 12293-12308 (2009).〕 a generalization of the Lyot filter,〔A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, "(Generalization of the Lyot filter and its application to snapshot spectral imaging )," ''Optics Express'' 18: 5602-5608 (2010)〕 and a generalization of the Bayer filter approach to multispectral filtering 〔N. Gupta, P. R. Ashe, and S. Tan, "(Miniature snapshot multispectral imager )", ''Optical Engineering'' 50: 033203 (2011).〕
While snapshot instruments are featured prominently in the research literature, none of these instruments have seen wide adoption in commercial use (i.e. outside the professional astronomical community) due to manufacturing limitations. Thus, their primary venue continues to be astronomical telescopes. One of the main reasons for the popularity of snapshot devices in the astronomical community is that they offer large increases in the light collection capacity of a telescope when performing hyperspectral imaging.〔M. A. Bershady, "3D spectroscopic instrumentation", to appear in ''3D Spectroscopy in Astronomy, XVII Canary Island Winter School of Astrophysics,'' eds. E. Mediavilla, S. Arribas, M. Roth, J. Cepa-Nogue, and F. Sanchez, Cambridge University Press (2009).〕〔N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, "(Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems )", ''Optical Engineering'' 51: 111702 (2012).〕
== See also ==

*Hyperspectral imaging
*Imaging spectroscopy
*Multi-spectral image
*Chemical imaging
*Imaging spectrometer
*Spectral imaging
*Computed tomography imaging spectrometer
*Image mapping spectrometer

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「snapshot hyperspectral imaging」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.